博客
关于我
hdu 1788 Chinese remainder theorem again(gcd)
阅读量:389 次
发布时间:2019-03-05

本文共 981 字,大约阅读时间需要 3 分钟。

Problem Description
我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的:
假设m1,m2,…,mk两两互素,则下面同余方程组:
x≡a1(mod m1)
x≡a2(mod m2)
x≡ak(mod mk)
在0<=<m1m2…mk内有唯一解。
记Mi=M/mi(1<=i<=k),因为(Mi,mi)=1,故有二个整数pi,qi满足Mipi+miqi=1,如果记ei=Mi/pi,那么会有:
ei≡0(mod mj),j!=i
ei≡1(mod mj),j=i
很显然,e1a1+e2a2+…+ekak就是方程组的一个解,这个解加减M的整数倍后就可以得到最小非负整数解。
这就是中国剩余定理及其求解过程。
现在有一个问题是这样的:
一个正整数N除以M1余(M1 - a),除以M2余(M2-a), 除以M3余(M3-a),总之, 除以MI余(MI-a),其中(a<Mi<100 i=1,2,…I),求满足条件的最小的数。

Input

输入数据包含多组测试实例,每个实例的第一行是两个整数I(1<I<10)和a,其中,I表示M的个数,a的含义如上所述,紧接着的一行是I个整数M1,M1…MI,I=0 并且a=0结束输入,不处理。

Output

对于每个测试实例,请在一行内输出满足条件的最小的数。每个实例的输出占一行。

Sample Input

2 1
2 3
0 0

Sample Output

5

Author

lcy

Source

2007省赛集训队练习赛(10)_以此感谢DOOMIII

#include
using namespace std;typedef long long ll;int main(){ int I,a; while(scanf("%d%d",&I,&a)!=EOF) { if(I==0&&a==0) break; ll ans=1,x; while(I--) { scanf("%lld",&x); ans=ans*x/__gcd(ans,x); } printf("%lld\n",ans-a); } }

转载地址:http://jlewz.baihongyu.com/

你可能感兴趣的文章
navicat工具查看MySQL数据库_表占用容量_占用空间是多少MB---Linux工作笔记048
查看>>
navicat怎么导出和导入数据表
查看>>
Navicat怎样同步两个数据库中的表
查看>>
Navicat怎样筛选数据
查看>>
Navicat报错connection is being used
查看>>
Navicat报错:1045-Access denied for user root@localhost(using passwordYES)
查看>>
Navicat控制mysql用户权限
查看>>
navicat操作mysql中某一张表后, 读表时一直显示正在载入,卡死不动,无法操作
查看>>
Navicat连接mysql 2003 - Can't connect to MySQL server on ' '(10038)
查看>>
Navicat连接mysql数据库中出现的所有问题解决方案(全)
查看>>
Navicat连接Oracle出现Oracle library is not loaded的解决方法
查看>>
Navicat连接Oracle数据库以及Oracle library is not loaded的解决方法
查看>>
Navicat连接sqlserver提示:未发现数据源名并且未指定默认驱动程序
查看>>
navicat连接远程mysql数据库
查看>>
Navicat通过存储过程批量插入mysql数据
查看>>
Navicat(数据库可视化操作软件)安装、配置、测试
查看>>
navigationController
查看>>
NB-IOT使用LWM2M移动onenet基础通信套件对接之APN设置
查看>>
NBear简介与使用图解
查看>>
Vue过滤器_使用过滤器进行数据格式化操作---vue工作笔记0015
查看>>